Here are all the trigonometric formulas:

  1. Sine formula: sin A = opposite/hypotenuse
  2. Cosine formula: cos A = adjacent/hypotenuse
  3. Tangent formula: tan A = opposite/adjacent
  4. Pythagorean theorem: hypotenuse^2 = opposite^2 + adjacent^2
  5. Reciprocal identities: csc A = hypotenuse/opposite, sec A = hypotenuse/adjacent, cot A = adjacent/opposite
  6. Quotient identities: tan A = sin A / cos A, cot A = cos A / sin A
  7. Even/odd identities: sin (-A) = -sin A, cos (-A) = cos A
  8. Sum and difference formulas: sin (A + B) = sin A cos B + cos A sin B, cos (A + B) = cos A cos B - sin A sin B, tan (A + B) = (tan A + tan B) / (1 - tan A tan B)
  9. Double angle formulas: sin 2A = 2 sin A cos A, cos 2A = cos^2 A - sin^2 A, tan 2A = (2 tan A) / (1 - tan^2 A)
  10. Half angle formulas: sin (A/2) = ± √((1 - cos A) / 2), cos (A/2) = ± √((1 + cos A) / 2), tan (A/2) = ± √((1 - cos A) / (1 + cos A))
  11. Product to sum identities: sin A sin B = (1/2) [cos(A-B) - cos(A+B)], cos A cos B = (1/2) [cos(A-B) + cos(A+B)], sin A cos B = (1/2) [sin(A+B) + sin(A-B)]
  12. Sum to product identities: sin A + sin B = 2 sin[(A+B)/2] cos[(A-B)/2], sin A - sin B = 2 cos[(A+B)/2] sin[(A-B)/2], cos A + cos B = 2 cos[(A+B)/2] cos[(A-B)/2], cos A - cos B = -2 sin[(A+B)/2] sin[(A-B)/2]
  13. Inverse trigonometric functions: sin^-1 (x) = y if sin y = x and -π/2 ≤ y ≤ π/2, cos^-1 (x) = y if cos y = x and 0 ≤ y ≤ π, tan^-1 (x) = y if tan y = x and -π/2 < y < π/2
  14. Hyperbolic functions: sinh x = (e^x - e^-x) / 2, cosh x = (e^x + e^-x) / 2, tanh x = sinh x / cosh x, csch x = 1 / sinh x, sech x = 1 / cosh x, coth x = cosh x / sinh x

These formulas are essential in mathematics and are used in various fields, such as physics, engineering, and finance, among others.

Comments

Popular posts from this blog

Overview of Trigonometric Function

Here are some common algebraic formulas

How to make your studying more effective: